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Abstract, The detormanon of o hquid surface due to an impinying two-dimensional jet 1s considered
assuming potential How  This problem was sobved numernically for small values of the Froudge number A by
Olmstead ind Ravnor 1963 By uang a different numernical procedure we sojve the prahlem tor larger
values of A up to A -- 6. We show that the profile of the hquid surface contains a train of waves far away
from the impinging jet

1. Introduction. In an interesting theoretical and numerical work, Olmstead and
Raynor (1964) examined the impact of a vertical jet on a stationary horizontal liquid
surface tsee Fig. 1). They derived the integro-ditferential system 11.1)-11.3) below for
the complex velocity £(r) on the free surface of the liquid. Thev simplified it by replacing
sin # by A in 11.2) and then solved the resulting system numerically. Their numerical
scheme converges, but only with few mesh points and for relatively small va .es of A,
with indication of a rapid growth in the error as A increases.

We shall derive a numerical scheme different from theirs to solve (1 11-(1.3) see
§ 2+, It enables us to compute the solution for arbitrary values of A upto A = A ~ 6.
Our computations show that the liquid surface contains a train of waves far from the
jet (see Figs. 1 and 2). These results are discussed in § 3

The problem is characterized by the velocity V', and the width p of the jetat ¥ - x|
the gas density pc;. the liquid density p, and the acceleration of gravity ¢. Taking b/ 7
as the unit length and V', as the unit velocity, Olmstead and Ravnor 119641 derived the
following nonlinear integro-ditfercntial equation for the compiex velocity £ on the free
surface (J:

i
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Here A is the Froude number defined by /:\‘
11.4) A=2p.V3/pi gb.

The variable 7 in (1.1)-(1.3) is related to the potential function ¢ on CJ: by the formula
(1.5) e ¥ =(1-r)/2, rel -1, +1}].

2. Numerical procedure. Tosolve (1.1)-i11.3) Olmstead and Raynor (1964) intro-
duced the N mesh points r; defined by

4
2.1 ":1'2(1{17)‘ I=1,-,N.
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FiGi. 1. Profile of the jet and the liquid surface for A = 0.6. The uves and a sketch of the flow are alvo vhown
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Fie. 2 Profile of the lquud surfuce for A 2

Approximating sin # by # in (1.2) and discretizing (1.1 and 1.2y, they obtained a
system of N equations with N unknowns 7, = 7(r;), I = 1, - -, N. This system was
solved by Newton’s method, using the solution corresponding to A = Q as the initial
guess. Converged solutions of the algebraic svstem of equations for N =20 and A = |
were presented in their paper. In addition, they gave an estimate of the error based on
calculation of the vertical force on the liquid surface. It showed that the error grows
rapidly with A, reaching 8% for A = 1. A smal! part of this error can be attributed to
the approximation sin # ~ 8. However, the main error in their solutions comes from
the fact that their liquid profiles do not contain waves. Numerical experiments show
that Olmstead and Raynor's numerical procedures alwavs give solutions of the discret-
ized equations without waves. However, for any A >, there exists a critical number
of mesh points N.{A) such that the scheme converges for N < N, (A) and diverges for
N >N tA). In addition the function N, (A} dccreases as A increases,

Equations (1.1)-(1.3) are reminiscent of the integro-dificrential equation derived
by Vanden-Broeck and Tuck (1977) and Vanden-Broeck, Schwartz and Tuck (1978)
to describe the flow behind a moving body. Using the analogy between these two
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problems and following the general philosophy of Vanden-Broeck, Schwartz and
Tuck’s method, the following successful numerical scheme was derived.

First we use (1.5) to rewrite 11.1)-(1.3) in terms of the new independent variable
¢. Next we introduce the N mesh potnts & given by

2.2 ; =t -1)F, =1, N

Here E is the interval of discretization. We also introduce the N corresponding
unknowns,

12.3) 8 = 8{rid;)), I=1,--,N.

By symmetry 8, = 0, so only N — 1 of the 8, are unknown. We shall also use the N -]
intermediate mesh points ¢,.,: given by

(2.4) Groan=Hé+éi),  I=1,- N-1
We now compute
T =Ty 2]

in terms of 6; by applying the trapezoidal rule to the integral in (1.1) rewritten with the
new variable, with the mesh points ¢;. The symmetry of the discretization enables us
to compute the Cauchy principal value as if it were an ordinary integral. The error
inherent in approximating the integral by an integral over a finite interval was found
to be negligible for NE large enough. Then from 7,., > we compute r.(é;., 2} and
from #, we compute 6., > In the discretization we have used five-point difference
formulas and four-point interpolation formulas and obtain the results in terms of 4.

Next we substitute into (1.2) the expressions so obtained for 7,., ;, 74(#,.; 2t and
6;.. »atthe N-2poinmts &,.,... I =2, -+ - N ~ 1. Thus we obtain a system of N'- 2
nonlinear algebraic equations involving the N — 1 unknowns 6,1 =2, -+ N. The last
equation is obtained by expressing 6 in terms of A5, 6, and A< by athree-point l.agrange
extrapolation formula.

For each value of A, the N — 1 equations are solved by Newton's method with 8, =0
as the initial guess. The remaining part of the computations follows closely Olmstead
and Raynor’s work. The scheme was found to be rapidly convergent and a solution of
the algebraic equations with an crror less than 10" was obtained in a few iterations.
For cach value of A and NE, the value of E was decreased, and correspondingly N was
increased, until the computed profiles remained unchanged, at least to graphical
accuracy. The procedure was then repeated for large values of NE until the results
became independent of NE. Most of the results presented in the next section were
obtained with £ =0.3 and N = 100.

3. Discussion of the results. Typical profiles o” the liquid surface for A = 0.6 and
A = 5 are presented in Figures 1 and 2. In both figures the honzontal scale has been
shrunk to show cicarly the train of uniform waves far from the jet. It is convenient to
characterize these waves by their steepness s defined as

(3.1 §=-

Here Ay is the difference of ordinate between o crest and a trough and I s the
wavelength. The values of s are presented as a function of A in Figure 3. As A tends
to zero, the stecpness s tends to zero and the waves can be approximated by the sine
waves of linear theory (sce Fig. 1). It can easily be veritied that the wavelength 7 of
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F1G. 3. Values of the steepness s as a function of the Froude numbes A.

the waves satisfies the dispersion relation

N

3.2 L =A7" tanh % as A - 0.

As A increases, the steepness s increases and the waves start to develop sharp
troughs and broad crests (see Fig. 2). These waves behave qualitatively like gravity
surface waves of finite amplitude turned upzide-down. This could be expected since
the complete problem can be interpreied as a negative-gravity water-wave problem
turned upside-down (Tuck {19785)). For steep waves the velocity is small at the troughs
and large at the crests. Since the mesh points correspond to equal increments in the
velocity potential, they are quite dense near the crests and sparse in the vicinity of the
troughs. This nonuniform spacing of the mesh points for A large limits the accuracy of
the present numerical scheme. Similar difficulties were encountered before by Schwartz
and Vanden-Broeck (1979) and Chen and Saffman (1980). Accurate solutions for
A > A, could not be computed even with N = 120,
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